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Abstract 
Recent political developments and academic debate indicate that future political commitment 
to the protection of natural resources is uncertain. This political uncertainty is particularly 
problematic when the danger of irreversible damage such as the extinction of species looms. 
Accordingly, policies are needed which can ward off such damage. This paper analyses a 
particular policy regarding a situation where the survival of an endangered species depends on 
certain types of biodiversity-enhancing land-use measures being carried out regularly, yet due 
to uncertain political commitment the periodical availability of a budget to finance these 
measures is not guaranteed. To insure against future underfunding for conservation, a fund is 
established which allows money to be saved for conservation in later periods. To maximise 
the long-term survival of the endangered species, it has to be decided in each period whether 
to spend the available money now or to allocate it to the fund for future use. The paper 
provides an ecological-economic model for this dynamic optimisation problem.  
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1. Introduction1 
Over the last thirty years, the need to protect natural resources and the environment has been 
increasingly recognised. This has resulted in a wide range of corresponding policies at both a 
national and an international level. However, recent political developments in some countries 
show signs of this trend being reversed. One prominent example is the Bush administration’s 
decision to abandon the 1997 Kyoto Protocol in March 2001. The new tendency in some 
countries’ policies is mirrored in the intellectual debate on environmental issues. BjØrn 
Lomborg’s book “The sceptical environmentalist”, for instance, has received great attention. 
Lomborg basically argues that the dangers of natural resource depletion and environmental 
destruction often are exaggerated. However, whether this new political and intellectual trend 
is merely short-lived or alternatively marks the beginning of a sustained rollback in 
environmental policy is not yet apparent. In other words, future political developments are 
shrouded by uncertainty.  

Political uncertainty may pose a particular problem if the danger of irreversible damage 
looms. One area where this is particularly relevant and which is addressed in this paper is the 
conservation of endangered species. For example, the policy of a government currently in 
power to protect such a species may irrevocably founder if a subsequent government fails to 
continue this policy and the later reintroduction of conservation measures is too late to save 
the species from extinction. Therefore, governments concerned by the long-term prevention 
of species loss need to examine how it can be ensured that their current policy aims will be 
achieved without having to worry about future political uncertainty. 

This paper addresses this task with regard to a situation which is typical of the conservation of 
many endangered species. Such a situation is characterised by the need to regularly carry out 
certain types of biodiversity-enhancing land-use measures to ensure the survival of the species 
and political uncertainty hanging over the regular availability of a budget to finance these 
measures. More specifically, we are concerned with a situation where the current budget is 
reasonably high and future conservation budgets are expected to decline in the medium term 
(although the size of these budgets is not known with any certainty).  

Such a situation may arise when a future government’s preferences are highly likely to shift 
away from biodiversity conservation – for example if sentiments to this effect are expressed 
by an opposition with a good chance of electoral success. Though primarily motivated by 
political uncertainty, the paper’s analysis is generally relevant to any situation where a 
decrease in funding for conservation can be anticipated. One example of such a situation is 
when an economic downturn looms, which may prompt cuts in public spending and 
consequently – assuming the government at this time considers conservation a normal good – 
result in less public funding for conservation. Another example is that of a foundation or 
NGO which finances conservation measures and which expects a decline in donations. 

A government that intends to take the danger of a dwindling budget into account into its 
conservation policies has to establish an institutional framework to ensure the money will be 
available for future conservation regardless of subsequent governments’ preferences. One way 
of doing this is to establish a conservation trust fund which is independent of any future 
government’s decisions. Below, we assume that this option is taken by the present 
government. Thus, the government has to decide in each period whether to spend the money 
available for conservation now or to allocate it to the trust, which will use it to compensate for 
any funding cuts and to finance conservation measures in the future.  

                                                 
1 Comments by Stefan Baumgärtner on a previous version of this paper are highly appreciated.  
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We assume that the government is unable to give any more money to the fund than what it 
regularly spends on conservation. This is a realistic assumption because such a measure may 
require raising taxes or increasing the public debt and may therefore be unpopular with voters, 
jeopardising the government’s chances of re-election. If the assumption is not met and for 
some reason the government is able to allocate additional money to the fund, this will 
obviously ease the problem of political uncertainty and thus need less attention. Therefore, 
under the assumption above, the government is faced with the problem of efficiently 
allocating a conservation budget over time (spending now or allocating it to the trust for 
future use) to maximise the survival probability of the endangered species.  

As both economic and ecological parameters influence the efficient allocation of the 
conservation budget over time, an ecological-economic modelling approach has to be chosen. 
Recently, a growing number of studies have integrated ecological and economic knowledge 
into the assessment of conservation policies at both a conceptual (e.g. Wu and Bogess 1999, 
Drechsler and Wätzold 2001, Baumgärtner 2003) and an applied level (e.g. Ando et al. 1998, 
Richards et al. 1999, Polasky et al. 2001, Johst et al. 2002).  

Most of these studies evaluate conservation policies from a static viewpoint. Exceptions 
include Richards et al. (1999), who develop optimal dynamic fire management strategies for a 
nature reserve, and Johst et al. (2002), who develop an ecological-economic modelling 
procedure to determine efficient compensation payments for species protection which are 
differentiated in not only space but also time. Costello and Polasky (2002) address a different 
dynamic optimisation problem. They evaluate different choice rules for a conservation agency 
which receives a budget in each period and has to decide which sites of heterogeneous 
ecological benefits to purchase first to maximise coverage by different species at the end of a 
number of periods. The agency has to take into account that sites not included in the reserve 
system are threatened by the prospect of development occurring with various probabilities.  

Our analysis differs from the above studies as it focuses on the problem of uncertainty about 
future political commitment to protect biodiversity as well as how best to deal with it from the 
angle of a current government committed to species conservation. To our knowledge, the 
newly evolving problem of political uncertainty has not yet been addressed in the 
environmental economics literature with respect to the protection of natural resources and the 
environment in general or with particular focus on species conservation.  

The paper is structured as follows. The basic setup of the model is explained in Section 2. The 
model solutions are derived in Section 3 using stochastic dynamic programming and 
interpreted in Section 4. The paper concludes with a discussion of the results in Section 5. 

 

2. The model 

2.1 Ecological benefits, economic costs and the objective function 
This paper is concerned with a situation where the present government aims to protect an 
endangered species not only today, but also in the future. We divide time into discrete 
periods, e.g. years, and assume the government wishes to protect the species over a number of 
T+1 periods, where T is arbitrary within the scope of this paper. As population dynamics and 
extinction processes are random processes, extinction cannot be avoided with certainty, 
although its risk can be minimised. The aim of the government then is to maximise the 
species’ population survival probability PT over the T+1 periods of interest. To develop a 
conceptual framework for this optimisation problem we have to find some formal rules that 
relate biodiversity-enhancing land-use measures with the survival probability of a population 
in a general way.  
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In theoretical ecology, it is commonly assumed that the survival probability η of a single 
population decreases exponentially at a constant rate known as the “population extinction 
rate” (Levins 1969, Wissel et al. 1994, Hanski 1999).2 Then the survival probability of the 
population over a time interval of length ∆t is 

)exp()( tt ∆−=∆ νη           (1) 

where ν is the extinction rate. Due to the Markovian nature of population dynamics (Footnote 
1), the survival probability in a particular period is not related to the survival probability of 
the preceding, following or any other periods. Using this, the survival probability over T+1 
periods each of length ∆t can be written as 

∏ ∑
= =

∆−=∆−=
T

t

T

t
ttT tt

0 0

)exp()exp( ννη        (2) 

where νt is the population extinction rate in period t. Here we assume that the population 
extinction rate is constant within each period but may vary between periods, depending on 
land use (see below). Lande (1993) and Wissel et al. (1994) develop general models to 
describe the stochastic dynamics of endangered populations and to establish how the 
population extinction rate (νt) depends on the population growth rate and the habitat capacity 
(Kt). The habitat capacity measures the number of individuals the habitat can sustain and is a 
function of habitat characteristics such as habitat size and quality. According to the two 
models cited, the extinction rate in period t is given by 

αν
t

t K
a

=            (3) 

where a is a species-specific parameter. The exponent α is positive:  

0>α ,            (4) 

and inversely related to the stochastic variation in the population growth rate (Wissel et al., 
1994; Drechsler and Wätzold 2001). 

We assume that without biodiversity-enhancing land-use measures the habitat capacity has a 
value of K(0). If certain biodiversity-enhancing land-use measures are carried out during 
period t, the habitat capacity is increased from its original value K(0) by an amount κt to 
K(0)+κt. We assume that this gain is maintained only for the time of the measures being 
carried out, i.e. for the duration of period t. If in the following period no measures are carried 
out, the habitat capacity is assumed to drop back to its original value K(0). The biodiversity-
enhancing land-use measures impose opportunity costs ct. We assume that the gain in habitat 
capacity is proportional to these costs with some proportionality factor b,  

κt=bct             (5) 

i.e. marginal costs are considered to be constant. With Eq. (3) we obtain for the extinction rate 
in period t: 
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2 The basic mathematical assumption is that the population dynamics can be described by a stochastic Markovian 
birth and death process (e.g. Goel and Richter-Dyn 1974; Nisbet and Gurney 1982) with constant birth and death 
rates. For the mathematical deduction of Eq. (1), including a discussion of the underlying assumptions, see 
Wissel et al. (1994) and Drechsler and Wissel (1997). 
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where 

b
KC

)0(

=            (7) 

The present government’s conservation aim can now be expressed as the maximisation of the 
(T+1) period survival probability PT with νt given by Eq. (6). As the numerator of the right-
hand side of Eq. (6) as well as the period length ∆t (Eq. 2) is the same for all periods t=0…T, 
this is achieved by maximising the objective function 

∑
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  where 
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2.2 The dynamics of the financial budget and the conservation agency’s management 
options  

Both present and future governments provide a certain grant in each period for conservational 
purposes. We denote the grant in period t as gt and assume that it consists of a deterministic 
component ht and – taking into account uncertainty about future economic and political 
developments – a random component εt, such that 

ttt hg ε+=            (9) 

for all t=0…T. The εt are assumed to be uniformly distributed in the interval 

[ ]σσε +−∈ ,t  .          (10) 

such that the probability density function of εt is  
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It is plausible to that the relative variation in the grants is less than 100%, i.e. σ/ht<1. These 
governmental grants are considered as exogenous in our model. They constrain the decisions 
of the conservation agency, which forms a different body and independently decides in each 
period how the available money should be allocated between present and future conservation. 
This decision is based on the objective function (Eq. 8), i.e. the aim of maximising the 
survival probability of an endangered species over time. The agency has to consider that in 
each period t it can give payments pt to land-users to increase the habitat capacity in that 
period by κt. It is assumed that land-users will carry out biodiversity-enhancing land-use 
measures when their costs are covered by the payments (ct=pt). In other words, the payments 
pt induce biodiversity-enhancing land-use measures of costs ct=pt which increase the habitat 
capacity by κt=bct=bpt (cf. Eq. 5). The Zt from the objective function Eq. (8) then assumes the 
value 

αα )(
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If the payment (pt) is less than the grant in period t (gt), the remaining amount (gt-pt) can be 
put into a conservation fund for future use. In this way, the conservation fund increases the 
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independence of the conservation agency from a future decrease in governmental grants. The 
size of the fund in period t is denoted as Ft with the initial fund size being F0. It is assumed 
that the money in the fund does not earn interest (cf. Discussion). Then for all periods t=1…T, 
the size of the fund is given by the recursive equation 

111 −−− −+= tttt pgFF           (13) 

In each period t the agency can select and spend an amount 

TtgFpp tttt ...0,0 =+=≤≤         (14) 

and save the amount Ft+gt-pt for the next period t+1 ( tp  is the amount of money available in 
period t).  

One problem for the agency is that the grant gt may vary over time and may do so randomly 
according to Eq. (9). This means that the agency is faced with a decision under uncertainty. It 
also means that the objective function, Eq. (8), is random. We assume that the agency’s goal 
is to maximise the expected value of S, i.e. 

max
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1
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→
+
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T
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t
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ZS α        (15) 

where  denotes the mean over all possible future developments of the gt, subject to the 
stochastic equation of motion, Eq. (13) and the constraints, Eq. (14). 

 

3. Model analysis 
The conservation agency is facing a multi-period decision problem under uncertainty with the 
standard approach of solution being stochastic dynamic programming (SDP) (cf. e.g. Clark 
1990, Dixit and Pindyck 1994, Richards et al. 1999, Costello and Polasky 2002). In SDP the 
optimal management strategy is determined backwards, i.e. first the optimal decision for the 
terminal period T is determined. Then – assuming that in T the optimal decision is made – the 
optimal decision in the preceding period T-1 is determined, and this process is continued until 
the first period t=0 is reached. 

Following Clark (1990, section 11.1), to perform the SDP we introduce the value function 

∑
=

=
T

tj
jpt ZtpJ

t

max),(          (16) 

which sums the components of the objective function Eq. (15) for periods j=t…T. Maximising 
the right-hand side of Eq. (16) delivers the optimal payments, pt. We start with the terminal 
period t=T and find for the optimal payment3  

TTTT gFpp +==*           (17) 

(i.e., all money is spent) with the corresponding value 

α)(
1),(

TT
T gFC

TpJ
++

−=         (18) 

The optimal payment pT-1* in period t=T-1 is given by the Bellman equation  

                                                 
3 The calculations from Eqs. (17)-(21) are shown in detail in Appendix A. 
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whose solution is 

)ˆ,min(* 111 −−− = TTT ppp          (20) 

where 111 −−− += TTT gFp  and 
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If 11ˆ −− < TT pp  (case a), we have an interior solution where only part of the available budget 

1−Tp  is spent. If alternatively 11ˆ −− ≥ TT pp  (case b), we have a corner solution where the entire 
available budget is spent. If we insert Eqs. (18), (20) and (21) into Eq. (19) (cf. Eq. A5 in 
Appendix A), the corresponding value J for cases (a) and (b) is 
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Now turn to period t=T-2. The structure of the corresponding Bellman equation 

{ })1,(max)2,( 222
2

−+=− −−−
−

TpJZTpJ TTpT
T

       (23) 

which determines the optimal payment pT-2* depends on whether J(pT-2,T-1) in Eq. (23) is 
given by case (a) or by case (b) of Eq. (22). This in turn depends on the relative magnitudes of 

1ˆ −Tp  and 1−Tp , which hinge on gT-1 and other variables. Unfortunately, gT-1 is not yet known 
in the present period t=T-2. Whether case (a) or (b) applies can only be decided 
probabilistically and J(pT-2,T-1) is the weighted sum of the two quantities in Eq. (22) with the 
weights being the probabilities of case (a) and case (b), respectively. Consequently, Eq. (23) 
is considerably more complex than Eq. (19), and cannot be solved analytically. To be able to 
proceed, we assume for the moment that the agency is not completely ignorant of the future 
grant gT-1 but knows whether case (a) or case (b) applies. Then Eq. (22) has the same structure 
as Eq. (19) (except that it now depends on the fund FT-2 and the grants gT-2, gT-1 and gT). The 
solution is analogous to that of Eq. (19), and again we have to distinguish between two cases: 
a case (a) where an interior solution exists and only part of the available budget is spent on 
conservation: 2222ˆ −−−− +=< TTTT gFpp , and a case (b) where a corner solution exists and all 
the money, 2−Tp , is spent. We can proceed in the same way until we have reached the first 
period, t=0.  

We find that the optimal payment pT-k* in a particular period t=T-k depends on whether in this 
and the following periods an interior solution nkTnkT pp +−+− <ˆ  exists. Let l ≤ k be the 
maximum number of consecutive periods starting from the current period t=T-k, such that for 
each period an interior solution exists. In mathematical terms: 

{ }{ }1,...2,1,0{,ˆ|},...,2,1{max,0max −∈∀<∈= +−+− λλ nppkl nkTnkT    (24) 

(in the following, we will speak of a “chain of length l”). If for instance we had five periods 
with the periods t=T-k, T-k+1, T-k+2 and T-k+4 having an interior solution and period t=T-
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k+3 having only a corner solution, then we would have a chain of length 3 containing periods 
t=T-k, T-k+1 and T-k+2. Below we will see that if the payments undergo no variation (εt=0), 
then l is the maximum number of consecutive periods which allow an even allocation of the 
budget across them. If we assume for a moment l as given, then the optimal payment in period 
T-k is 

1
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            (25) 

(proof by induction in Appendix B). To give an example, consider a two-period problem, k=1, 
which is equivalent to the above solution for period t=T-1. If 1ˆ −Tp < 1−Tp  (case a as above), 
then Eq. (24) leads to l=max{0,1}=1 and 11 ˆ* −− = TT pp  with 1ˆ −Tp  given by Eq. (21). If 

1ˆ −Tp ≥ 1−Tp  (case b as above), Eq. (24) becomes l=max{0,Ø}=0 and Eq. (25) reduces to 

1111* −−−− +== TTTT gFpp .  

The problem now is that l depends on the future grants, and if these are uncertain, l is 
uncertain, too. To eliminate this uncertainty from the optimal payment pT-k*, a sensible option 
is to find the mean of all possible chain lengths. For this we need the probability distribution 
P(l) of the chain length, which is determined in Appendix C. If the P(l) are known the optimal 
payment in period t=T-k may be approximated4 by 

∑
=

−− =
k

l
kTkT lplPp

0

)(*)(*          (26) 

Equation (26) means that the optimal payment is the sum of the payments for all l, each 
payment being weighted by the probability P(l) that the chain length is l. 

 

4. Interpretation of the general solution 

To gain a general understanding of the model behaviour, we proceed in a stepwise manner 
and interpret Eq. (26) by way of three examples. In the first example we investigate the 
deterministic behaviour of the model. The grants may vary but do so in a deterministic (i.e., 
predictable) manner, i.e., stochasticity is absent (εt=0). In the second example we add 
stochasticity to the grants ( [ ]σσε +−∈ ,t ), but assume that changes in the grants do not 
exhibit any deterministic changes: ht=h, F0=0. Lastly, in the third example the variation in the 
grants has both a deterministic and stochastic component. In particular, we assume that the 
grants have a negative deterministic trend such that the deterministic component of the grant 
in the first period, h0, is reduced to h0-δ in the first and h0-tδ in period t. In addition to this, 
there is a stochastic variation in the grants described by [ ]σσε +−∈ ,t . This example takes up 

                                                 
4 The exact solution for pT-k* would have to be calculated from the Bellman equation for period T-k, 

)1,(max),(
2

+−+=− −−−
−

kTpJZkTpJ kTkTpkT
T

, where )1,( +−− kTpJ kT  is a linear combination of 

the values J for all possible chain lengths l (cf. discussion of Eq. 22). Although an analytical solution of this 
complex Bellman equation cannot be obtained, calculations indicate that the exact solution is, similar to Eq. (26), 
a weighted sum of the p*T-k(l) with the weights being the probabilities P(l) multiplied by some correction factors. 
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the theme of the paper by adopting a ‘pessimistic view’ of the future political situation 
regarding species conservation. 

 

Example 1: Deterministic grants, εt=0 

With all εt being zero, Eq. (25) reduces to 









+

+
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n
nkTkTkT hF

l
lp
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which is just the average of the grants over all l+1 periods from t=T-k to t=T-k+l. Note that 
without loss of generality, the fund FT-k may be set to zero, as a non-zero value can be 
considered in the first grant, hT-k. For the moment we assume the chain length l as given. 

The fund in the following period is kTkTkTkT phFF −−−+− −+= *1 . By setting σ=0 in Eq. (C6) 
of Appendix C we obtain the optimal payment )(*)(*1 lplp kTkT −+− = . Proceeding forwards 
in time, the same result is obtained for all further periods: 

lnlplp kTnkT ...1),(*)(* == −+−         (28) 

In other words, if l is the chain length, the optimal decision is to spend the same amount of 
money in each period and this amount is the average of all grants over the l+1 periods.  

Now we determine the chain length l. With εt=0, Eq. (C10) in Appendix C reduces to 

∑
=

+−−+− >
+
+

−+=∆
n

i
likTkTnkT d

l
nhFl

0
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1
1)(        (29) 

and Eq. (24) can be rewritten as  

{ }{ }1,...2,1,0{,0)(|},...,2,1{max,0max −∈∀>∆∈= +− λλ nlkl nkT     (30) 

What do Eqs. (29) and (30) mean? As explained above, without loss of generality we can 
assume FT-k=0. Then, using Eq. (C4) in Appendix C, Eq. (29) can be rewritten as 

∑ ∑
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l

j
jkTikT h

l
h

n 0 01
1

1
1          (31) 

stating that (starting from period T-k) the average of the grants of the first n+1 periods must 
exceed the average of the grants of all l+1 periods. Equation (30) then says that l+1 is the 
maximum possible number of consecutive periods such that picking any number 0 ≤ n ≤ l-1 we 
find that the average grant in the first n+1 periods is higher than that considering all l+1 
periods. The reason for this result is that according to Eqs. (27) and (28) it is optimal to re-
allocate money from periods with high payments to periods with lower payments such that in 
the end all periods receive the same amount. Of course, this reallocation is only possible 
forwards in time, i.e. only from periods T-k+n to periods T-k+n+j with j ≥ 1. An even 
allocation of the sum of all l+1 grants, ΣhT-k+n, is therefore only possible if the first periods 
receive higher grants on average than the following ones, and this is guaranteed by Eq. (29).  

To obtain a clearer understanding of the arguments, consider the following two cases with 
T+1 periods, t=0…T (without loss of generality, F0=0). The simplest case is a constant 
negative trend in the grants: ht=h0-δt>0 for all T+1 periods. As an even allocation of the 
payments is optimal (Eq. 28), it makes sense to save money in the first half of all periods 
(when the grants are above average) and to spend this money in the second half (when the 
grants are below average). The money saved is accumulated in the fund, which increases in 
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the first periods and decreases in the last ones. The average of the grants the first n periods 
receive is always higher than the average of the grants of all periods and l assumes its 
maximum possible value: l=T. The optimal payment for the first period is 

δδ
2

)1(
1

1)(** 0
0

000
ThthT

T
Tlpp

T

t
−=








−+

+
=== ∑

=

     (32) 

and the same optimal payment is obtained for all the following periods, t=1…T (note that a 
chain of length l means that constant payments can be achieved over l+1 periods). 

 

Figure 1: Optimal payments (dotted line) when grants (solid line) first decrease, increase, 
and then decrease again. The evolution of the fund is shown by the dashed line. 
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In the second case (Fig. 1) the grants decrease in the first periods and then increase before 
decreasing again. In the first period a chain of length l=3 exists which contains periods 
t=0,1,2,3. In periods 0 and 1, money is saved which is spent in periods 3 and 4. The payment 
can be maintained at the level p*=5 during these four periods. Between periods 3 and 5 the 
grant increases, such that in periods 3 and 4 the chain length is 0 and constant payments 
cannot be maintained. In period 5, again a chain of length l=3 exists and constant payments 
can be maintained over periods 5–8 by saving money in period 5 and 6 and spending the 
saved amount in periods 7 and 8. The analysis demonstrates that the whole process may 
contain several chains. Each chain can be identified by a plateau in the payment (leading to 
the required even allocation of the money; (cf. Eqs. (27) and (28)). In times of increasing 
grants, all the money is spent (expressed in mathematical terms, we are confronted with a 
corner solution (cf Eq. (20)) and saving money is pointless if an increase in the grants can be 
expected (in particular, consider the periods t=3–5 between the two chains in Fig. 1). Another 
observation is that the dotted payments curve looks a bit like a gliding average of the solid 
grants curve, levelling out some of the fluctuations in the grants, and the general rule for 
selecting the optimal investment then reads: Have as little variation in the payments as 
feasible within the budget constraints. Equal payments in all T+1 periods may be infeasible as 
we demand that Ft>0 for all t=0…T. As demonstrated in Fig. 1, equal payments may be 
achievable only within sections (“chains”) of the entirety of all periods. Payments between 
chains differ.  
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Example 2: Stochastic grants without any deterministic changes, F0=0, ht=h and εt ≠ 0 

In this example we investigate the effect of the uncertainty in the grants: εt ≠ 0 on the optimal 
payment with the grants having the same magnitude in all periods, t=0…T:  F0=0, and 
ht=h0=h. For the first period, t=0, Eq. (25) becomes 
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As the chain length l is not known, we have to take the average over all payments with chain 
length probabilities P(l), and with Eq. (26) the optimal payment becomes 
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(note that the first sum now starts from l=1 because for l=0 the second sum is zero). In 
Appendix B we show that in the absence of deterministic changes in the grants, ht=h, the 
probabilities P(l) can be approximated by P(l)=1/T for l>0 and P(0)=0., i.e. the chain length l 
may range from 1 to the maximum possible value T, and each l value has the same 
probability. With this, the optimal payment in period t=0 becomes5 
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It can be seen that the uncertainty in the grants reduces the optimal payment by an amount 
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which is the product of three factors: 

I. The variance of the grants, σ2, divided by the deterministic value of the grants, h, plus 
C, which is the initial habitat capacity divided by the scaling factor b (cf. Eq. 7). 

II. The term (α+2)/6, where α is species-specific and characterises the relationship 
between extinction risk and habitat capacity (Eq. 4). 

III. A term that depends only on the number of periods, T, and decreases with increasing 
T. 

Altogether, the larger the relative variation in the payments (I), the stronger the non-linearity 
in the benefit function (II), and the smaller the number of periods (III), the more money is 
saved for the future.6 

                                                 
5 The optimal decision in the following periods, t>0 can be obtained in an analogous manner (the only difference 
from the above calculations being that the amount of money available in period t=1 is not h but F1+h+ε1=2h-
p0*+ε1; the analogue applies to all other periods, t>1). 
6 These results could already be derived from the structure of Eq. (25) if we relate the chain length l to the 
number of periods T. 
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The reason why stochasticity in the grants leads to reduced payments is due to the fact that the 
third derivative of the benefit function (Eqs. 8 and 12), d3Z/dp3, is positive. This means that 
the higher the payment, the less the degree of concavity at this point of the benefit function 
and the less the effect of variation in the payments on the expected benefit. This tallies with 
results of Leland (1968), who showed in a two-period consumption model with a concave 
benefit function that if the third derivative of this benefit function is positive, consumption in 
the first period is reduced in favour of higher consumption in the second – an effect he 
dubbed “precautionary saving”. It also explains the role of the parameter α. The third 
derivative of the benefit function is proportional to α(α+1)(α+2) and increases with 
increasing α. Thus, increasing α leads to more precautionary saving. In addition to Leland’s 
result, Eq. (33) shows the effect of the number of periods if this exceeds 2. As stated above, it 
turns out that the smaller the number of periods, the more money is saved. The reason for this 
is that the more periods exist, the more likely the stochastic variations in the grants are to 
cancel each other out, and the less the requirement for precautionary saving. 

 

Example 3: Stochastic grants with a negative expected trend: εt ≠ 0, F0=0 and ht=h0-tδ with 
δ>σ/2 

We now turn to the example that captures the possibility of a political rollback in species 
conservation. Grants are expected to decline in the medium term but may temporarily 
increase. This requires the consideration of at least three periods, t=0,1,2 such that grants are 
most likely to decline between the first and the second periods and may further decrease, or 
change trend and increase, between the second and the third period.7 The expected decline in 
grants is described by ht=h0-tδ and possible deviations are described by stochastic variation of 
magnitude σ. We distinguish between three cases: 

1. σ < 2δ  

2. σ > 4(h0+1)/(α+2)-2δ  

3. 2δ ≤  σ ≤  4(h0+1)/(α+2)-2δ         

In the first two cases, according to Appendix B we find P(2)=1 and P(1)=P(0)=0 (note that 
capital P denotes a probability and lower case p a payment). The chain length is exactly l=2 
and the optimal payment is given by Eq. (25) for l=2: 
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We can see that both the trend (δ) and the uncertainty in the grants (σ) reduce the optimal 
payment p0*, as expected from the previous examples. In the third case the situation is less 
clear, because here the probability of obtaining a chain of length l=2 is less then one and reads 
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For the optimal payment we obtain [with P(l=1)=1-P(l=2)] 

                                                 
7 A larger number of periods would complicate the analysis significantly because the complexity of the nested 
integral (Eq. (C12) in Appendix C determining the probability of observing a particular chain length) would 
increase considerably. 
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Whether p0* increases or decreases with increasing σ can be seen from the first derivative, 
dp0*/dσ. Astonishingly, it turns out that the first derivative is not always negative, i.e., 
increasing uncertainty σ does not necessarily lead to a reduction in the optimal payment. 
Instead, a decrease, i.e. a positive first derivative, is found if  
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which means that uncertainty calls for an increased payment. The reason for this is that the 
expected chain length is decreased from l=2 to a value l<2 (cf. Eq. 38), which has to mutually 
opposing consequences. First, according to Eq. (32), if there is no uncertainty and a constant 
negative trend in the grants (δ>0), a shorter chain length leads to higher payments and the 
effect is proportional to δ. Second, according to Eq. (35), if there is no trend but uncertainty in 
the grants (σ>0), a shorter chain length leads to lower payments and the effect is proportional 
to σ2. In Eq. (39) both effects are present. If σ is sufficiently small (Eq. 40), the former 
dominates and a shorter chain length altogether increases the optimal payment.  

The fact that there exist situations that require precautionary saving as well as situations that 
require precautionary spending is worrying if the aim is to develop guidelines for decision-
making. Therefore we investigate how critical this ambiguity is and what possible errors may 
arise if it is ignored. We hypothesise that even in the difficult third case the optimal payment 
p0* which is correctly described by Eq. (39) can well be approximated by p0*(l=2) of Eq. 
(37). This would mean that the relative deviation between the two quantities,  
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is sufficiently small. As grants must be nonnegative, we have σ ≤ h0, and due to 2δ ≤ σ (case 
3), the numerator in Eq. (41) is not larger than δ(1-2δ/h0)/4. Furthermore, the denominator is 
not smaller than h0. Then altogether,  
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i.e. in the third case, the correct payment p0* (Eq. 39) can be approximated by p0*(l=2) of Eq. 
(37) with a relative error of approximately 3%. As p0*(l=2) clearly decreases with increasing 
σ, the same holds for p0* with an error less than 3%. Thus any possible increases in the 
payment are negligible. We conclude that in the three-period case with negative trend and 
uncertainty in the grants, uncertainty decreases the optimal payment – with possible 
exceptions of negligible magnitude. 

 

5. Discussion 
The starting point of this paper was the problem of political uncertainty, i.e. doubts about 
political commitment to the protection of natural resources and the environment continuing. 
Within this general political framework we focus on species conservation, specifically on the 
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important situation where the survival of an endangered species depends on regularly carrying 
out certain types of conservation measures. It is assumed that future budgets for conservation 
are expected to decline. The relevance of the paper goes beyond the problem of political 
uncertainty as such an assumption also encompasses situations where an economic downturn 
is likely, probably entailing conservation budget cuts, as well as circumstances in which the 
donations to an NGO that finances conservation measures can be expected to decline. Against 
this background a conceptual model is developed to determine the efficient allocation of the 
available financial resources over time to maximise the survival probability of endangered 
species. The model suggests that the population survival probability is maximised if the 
payments inducing the biodiversity-enhancing land-use measures are allocated as evenly as 
possible over time.  

The requirement of even payments stems from the structure of the ecological benefit function, 
Eq. (6), which is additive over the periods with each summand being concave. The additivity 
of the benefit function reflects the fact that the probability of surviving several periods is the 
product of the probabilities of surviving the individual periods (Eq. 2). This multiplicative 
characteristic makes ecological sense: if we acknowledge that memory effects in the 
population dynamics can be ignored with respect to all the other factors influencing the 
dynamics, the probability of surviving one period of time is independent of the probability of 
having survived the previous period of time.  

Due to the restriction that the fund must not be negative and the fact that grants may 
temporarily increase, evenly allocating the payments over all periods may be impossible. In 
such a case the entirety of all periods has to be divided into appropriate sections called 
‘chains’, such that the periods belonging to the same chain receive identical payments. 

To reflect the possibility of a decreasing commitment to conservation, we assumed that a 
negative trend in the grants can be expected, but that the exact temporal development of the 
grants is subject to uncertainty. The model results show that in the presence of uncertainty we 
find cases where the optimal payments in the first periods are smaller compared to a situation 
where future grants are known, but we also find cases where the optimal payments are larger! 
The reduction of the optimal payments in the former cases is known as precautionary saving 
and is explained by the positivity of the third derivative of the benefit function. This 
argumentation, however, ignores the fact that uncertainty affects the optimal payment via not 
only the shape of the benefit function but also the chain length. As demonstrated in Example 
3 of Section 4, uncertainty may decrease the expected chain length and increase the optimal 
payment in the first period. Clearly this ambiguity could considerably complicate the 
management of funds for species protection. However, our results suggest that the chain 
length effect that may lead to increased payments is relatively small. 

The magnitude of precautionary saving also depends on characteristics of the species to be 
conserved. The variable α (Eq. 3) indicates the variation in a species’ population growth rate, 
and as a general rule a large α corresponds to species with small variation in the population 
growth rate such as large mammals and a small α to species with large variations such as 
various insects. The model shows that the larger α, the higher the level of precautionary 
saving. 

In the present paper we have assumed zero interest rates, because the analysis of non-zero 
interest rates would be extremely laborious. The reason is two-fold. Firstly, as known from 
the standard microeconomic analysis of an optimal intertemporal consumption decision in a 
two-period case, there are various ways in which the interest rate affects the allocation of 
resources over time and there is no single answer. If there are T>2 periods, the situation is 
much more complex and therefore general guidelines are difficult to derive. Secondly, 
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including uncertainty into the analysis turns the allocation problem from a linear into a 
quadratic one: in the two-period case, the equation that determines the optimal payment8 
becomes quadratic in p0 if uncertainty (σ2>0) is added. Again, this problem multiplies if there 
are Τ>2 periods. We leave it to future research to analyse in detail the effect of non-zero 
interest rates on the problem addressed in this paper. 
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8 In two periods the optimal payment p0* is given by 
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Appendix A: Optimal payments pt* for periods t=T and t=T-1 
The optimal payment in period t=T is determined by 

α)(
1maxmax),(

T
pTpT pC

ZTpJ
TT +

−==        (A1) 

under the budget constraint 

TTTT gFpp +=≤≤0          (A2) 

In this terminal period the agency is faced with a decision under certainty, as both the fund FT 
and the grant gT are known and no further decision will have to be made in the future. 
Therefore the argument to be maximised in Eq. (A1) is simply -(1+pT)-α. With α>0 (Eq. 4) the 
solution is 

TTTT gFpp +==*           (A3) 

with the corresponding value 
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In the preceding period t=T-1, the grant in this period, gT-1, is known but the grant in the 
following period, gT=hT+εT, is not yet known to the agency, and thus a decision has to be 
made under uncertainty. The optimal payment is the payment that maximises the SDP 
recursion equation (also called the Bellman equation) for period t=T-1, which reads (cf. Clark 
1990, p. 345) 
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Note that the term in brackets ...  contains J(pT,T) of Eq. (A4) where FT is evaluated as a 
function FT=FT(pT-1) of the payment pT-1.9 Due to Eq. (13), FT depends on pT-1 via          
FT=FT-1+gT-1-pT-1. All these quantities are known with certainty in the current period t=T-1. 
The uncertain element in Eq. (A5) is the grant in the terminal period t=T: gT=hT+εT with  
εT∈[-σ,σ] (Eqs. (9) and (10)).  

The exact evaluation of the term in brackets, ... , is not possible. Therefore we proceed as is 
customary in stochastic dynamic programming and assume that the magnitude of stochastic 
variation, σ, in the grant gt is sufficiently small compared to the deterministic value ht. In 
particular, if σ/hT is small then the quantity 
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       (A6) 

is small, too. With x sufficiently small, a mathematical standard technique, Taylor expansion 
(see e.g. Bronstein and Semendyayew 1985), can be employed to expand the first fraction in 
Eq. (A5), including terms up to the order of x3: 

                                                 
9 This leads to the typical recursive nature of the Bellman equation (cf. Clark 1990). 
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The term O(x4) contains terms of the order of x4 or higher which can be neglected if x is not 
too large (see below). 

With Eq. (10) we have 
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and the expected value on the right-hand side of Eq. (A5) becomes 
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with a relative error of the order of x4 which can be neglected.10 

We search for the optimal payment pT-1* that solves Eq. (A5) and maximises its right-hand 
side. To maximise the right-hand side of Eq. (A5), we take the derivative with respect to cT-1 
and set it to zero: d{…}/dcT-1=0 (the second derivative can easily be shown to be negative 
(Appendix B), indicating that we indeed obtain a maximum). The solution of this equation is 
denoted as 1ˆ −Tp . Using Eq. (A8), with some algebra the equation can be reformulated as 
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which is solved by 
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Whether Eq. (A10) is the solution of Eq. (A5) depends on whether it fulfils the budget 
constraint 

1111 −−−− +=≤ TTTT gFpp  (Eq. 14). Three cases are possible: 

a. 11ˆ −− < TT pp : 1ˆ −Tp  fulfils the budget constraint and thus the optimal payment is 

111 ˆ* −−− <= TTT ppp  

                                                 
10 Mathematical textbooks like that by Bronstein and Semendyayev (1985) provide estimations of the remainder 
terms of Taylor expansions, such as that in Eq. (A7), and it can be shown that the relative error in Eq. (A8) is 
less than α(α+1)(α+2)(α+3)[σ/(1+FT-1+gT-1+hT)]4/96. If we assume a plausible value α=2, the relative error can 
be shown to be less than 10%, as long as σ<(hT-1+hT)/3. In other words, if we accept a relative error of 10%, the 
stochastic variation σ in the grants may be up to (hT-1+hT)/3, which is about two-thirds of the deterministic values 
of the grants! For instance, if hT-1=hT=€9,000, then the stochastic variation σ must not exceed €6,000 to keep the 
model error below 10%. This is an acceptable constraint and does mean a significant loss of generality. 
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b1. 11ˆ −− = TT pp : 1ˆ −Tp  just fulfils the budget constraint and thus the optimal payment is 

111 ˆ* −−− == TTT ppp  

b2. 11ˆ −− > TT pp : Eq. (A10) violates the budget constraint. As the second derivative of the 
right-hand side of Eq. (A5) is positive, this right-hand side is a strictly monotonically 
increasing function of pT-1 on the interval [0, 1−Tp ] and is thus maximised by 11 −− = TT pp . 
Therefore, again, the optimal payment is 11* −− = TT pp . 

 

Appendix B: Proof of Eq. (25) 
The proof is by backward induction. Let l be the chain length. We claim that  

• the optimal payment pT-k*(l) is given by Eq. (25), and 

• the value function has the form 
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where ∑
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and 6/)1(22 += αασβ . The last term in Eq. (B1), ϕ, is 

a function that depends only on the deterministic grants of the periods t=T-k+l+1 to t=T. It 
is zero if l=k. Below we are only interested in the first and second derivatives of J(pT-k,T-
k). As ϕ is not dependent on pT-k-1 and thus drops out in the derivative, its particular 
structure is not of interest. 

We perform the induction from k to k’=k+1 and maximise the value function for t=T-k-1: 
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where ∑
=

+−−−−− ++=
l

j
jkTkTkT hgFu

0
11'  and the mean  is taken over εT-k which is uncertain in 

period t=T-k-1. 

First we discuss the second derivative of the term in braces {…} of Eq. (B2) with respect to 
the payment pT-k-1: 
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The last term of Eq. (B3) is always negative. If we restrict pT-k-1 to the feasible interval [0, 
1−−kTp ] where 1−−kTp =FT-k-1+gT-k-1 is the budget constraint in period T-k-1 (cf. Eq. 14), we 

have pT-k-1 ≤ u’ and the first term in Eq. (B3) is negative, too. Altogether, the second derivative 
is negative for all payments pT-k-1 that fulfil the budget constraint pT-k-1 ≤ 1−−kTp . 

The optimal payment is now obtained by taking the first derivative of the term in braces {…} 
of Eq. (B2) with respect to pT-k-1. This derivative is zero if pT-k-1 is given by the unique 
solution 1ˆ −− kTp , which is identical to Eq. (25) with k being replaced by k’=k+1 and l being 
replaced by l’=l+1. The following two conclusions directly follow from the negativity shown 
above of the second derivative: (1) If 1ˆ −− kTp < 1−−kTp  (interior solution: cf. case a in Eq. (20)) 
it maximises the term in braces, {…}, of Eq. (B2) and thus uniquely solves Eq. (B2). (2) If 
alternatively, 1ˆ −− kTp ≥ 1−−kTp  (corner solution: case b in Eq. (20)), then due to the uniqueness 
of the solution 1ˆ −− kTp , the term in braces increases strictly monotonically with pT-k-1 on the 
interval [0, 1−−kTp ] and pT-k-1 = 1−−kTp  uniquely solves Eq. (B2). Altogether, we either have a 
chain of length l’=l+1 (case a) or l’=0 (case b) with the optimal payment pT-k-1* being given 
by Eq. (25) with l’=l+1 or l’=0, respectively. 

Having completed the induction for the optimal payment and proved Eq. (25), we still have to 
prove Eq. (B1). For this we insert the two alternative solutions, 1ˆ −− kTp (in case a) and 1−−kTp  
(in case b) into Eq. (B2). We start with case a and find 

[ ] [ ]
),...,,(

)2/('

/1
)2(

)2/('
1)1,( 112

1

1
2

1 TlkTlkT

l

j
kT hhh

luC

j
l

luC
kTpJ ++−++−

+

=
−− +















++
++

++
−=−−

∑
ϕ

β
α

            (B4) 

which is identical to Eq. (B1) if we replace k by k’=k+1 and l by l’=l+1 in Eq. (B1). For case 
b we find 
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The first term in Eq. (B4) is identical to that of Eq. (B1) if we replace k by k’=k+1 and set 
l’=0 in Eq. (B1). Like in Eq. (B1), the second term, ϕ’ (Eq. B5) is a function of the 
deterministic grants of the periods t=T-k’+l’+1 to t=T (note that due to l’=0 and k’=k+1 we 
have T-k+l+1=T-k), whose particular structure is not of interest. This completes the induction 
from k to k’=k+1 and the proof of the two introductory claims. 

 

 



 19

Appendix C: The chain length distribution P(l) 

Assume σ ≥ 0 and we are in period t=T-k. We are interested in the chain length l, i.e. the 
maximum number of periods such that nkTnkT pp +−+− <ˆ  for all n=1…l. The probability that l is 
the chain length then is the probability π(l) that nkTnkT pp +−+− <ˆ  for all n=1…l 
multiplied by the probability that no larger l’>l can be found where the condition 

nkTnkT pp +−+− <ˆ  is fulfilled for all n=1…l’. Expressed in mathematical terms, the probability 
that l is the chain length is 

∏
+=

−=
k

lm

mllP
1

))(1()()( ππ          (C1) 

where  

( ))1,...2,1,0{|ˆPr)( −∈<= +−+− lnppl nkTnkTπ       (C2) 

(note that Eqs. (C1) and (C2) are equivalent to Eq. (24) but explicitly consider that the chain 
length l is not known with certainty. It follows that 

1. The minimum possible chain length is 0, i.e. π(0)=1; 

2. The maximum possible chain length in period t=T-k is k; 

3. Long chains are not necessarily less likely than short chains (i.e., π(l) may increase 
with l), as can be seen below and in Example 3 of Section 4). 

To determine the probability π(l) we start with period t=T-k and determine the likelihood that 
an interior solution exists, i.e. that kTkT pp −− <ˆ  (set n=0 in Eq. C2). Assuming that an interior 
solution exists we project into the uncertain future (the εT-k+n, n=1…k are uncertain), proceed 
to the next period, t=T-k+1 and determine the (conditional) probability that 11ˆ +−+− < kTkT pp  
(n=1 in Eq. C2). We proceed in this manner until we have reached period t=T-k+l-1 (n=l-1 in 
Eq. C2). 

The first condition for an interior solution, kTp −ˆ (l)< kTp − , reads 

0
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where 
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jkTkTkTl hgFd

1

   and   ∑
=

+=
l

j
l js

1

2 )6/()2(ασ      (C4) 

(cf. Eqs. 14 and 25). 

If Eq. (C3) is valid, the fund in the following period will be FT-k+1=∆T-k. The money that can 
be spent in the next period t=T-k+1 will be  

1111 +−+−+−+− ++= kTkTkTkT hFp ε         (C5) 

where εT-k+1 is uncertain. With this the optimal decision in period t=T-k+1 will be 
))1(ˆ,min()1(* 111 −=− +−+−+− lpplp kTkTkT  where 
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With Eqs. (C5) and (C6), the condition for an interior solution, 1ˆ +−kTp (l-1)< 1+− kTp , reads 
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Similar to above, if Eq. (C7) is valid, the fund in the following period will be FT-k+2=∆T-k+1. 
We proceed in the same way as from T-k to T-k+1 and find for arbitrary n<l: 
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and Eq. (C2) is rewritten 

( ))1,...2,1,0{|0)(Pr)( −∈>∆= +− lnll nkTπ        (C9) 

with ∆T-k+n given by Eq. (C8). 

Now consider a relatively general case: a positive initial fund, F0>0, a positive first period 
grant, h0>0, and a constant non-positive deterministic trend in the grants: ht=h0-tδ (δ ≥ 0). 
Note that all grants have to be positive, ht>0, which requires h0>kδ>lδ. We consider the first 
period, t=0, of k+1 periods. Equation (C8) becomes 
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For arbitrary l, 
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which is always positive, given h0>lδ. An immediate consequence of Eqs. (C9) and (C11) is 
that the chain length is at least 1: π(1)=1. For σ>0 the probability π(l) of obtaining a chain of 
greater length, l>1, is the nested integral 

∫∫ ∫∫
∑∑

=
−

=
−−

−

=

+−

−

−
+−

+−
−

σ

ε

σ σ

ε

σ

ε

εεεε
σ

π
2

1
1

0
1

0
1

1

1

01
1
2

0
2 )()((

1
)(

))()((
))()((

211)2(
1)(

l

i
i

i
ll

n

i
i

i
nn lala

l
la

lala

n
lala

l ddddl ΛΛ    (C12) 

with coefficients (for all n=1…l-1) 
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            (C13) 

An analytical solution can easily be obtained for l=2 where we have to consider only the first 
integral in Eq. (C12) whose lower bound is  
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If a1
0<σ , the lower bound of the integral, -a1

0, falls within the range of the ε1 (Eq. 10) and the 
first integral becomes 
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Otherwise, i.e. if a1
0>σ  (which may result, for instance, from F0=0 and δ>σ/2), the first 

integral in Eq. (C12) assumes its maximum value, 2σ, and consequently, π(2)=2σ(2σ)-1=1, 
leading to P(0)=P(1)=0 and P(2)=1. For larger chain lengths, l>2, a tractable analytical 
solution requires simplifying assumptions: we have to set the initial fund and the deterministic 
trend in the grants to zero (F0=δ=0) and we have to ignore the terms of the order σ2 in Eq. 
(C13). Under these assumptions we find π(1)=1, π(2)=1/2, π(3)=1/3, π(4)=1/4-τ with 
τ=5/1728<<1. If there are altogether 5 periods (k=4), the corresponding chain length 
probabilities P(l) are P(1)=P(2)=P(3)=1/4+τ/3, P(4)=1/4-τ, and P(0)=0. Altogether, with 
small error the probabilities P(l) for l>0 are almost identical, i.e. the chain length distribution 
is almost uniform. The shape of the distribution is not expected to change drastically if there 
are more periods, k>4, and we conclude that P(l)=1/k for l=1…k is a reasonable 
approximation of the chain length distribution. 

 


