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Abstract
A reserve site selection model is presented that adds three criteria to the species presence criterion traditionally used in reserve site selection models. These restrictions reflect the assumption that a species is conserved in a reserve site if (i) the habitat type of the reserve site is appropriate for the species; (ii) environmental quality of the reserve site meets the species' environmental demands; and (iii) the amount of habitat area available within a radius depending on the species' home range meets the species' demand for habitat area. The model is demonstrated with a hypothetical data set of 500 reserve sites and 40 species to test its performance with an off-the-shelf commercial MIP solver. Although it may take a very long time to find a guaranteed optimal solution, reasonable results are found within approximately two hours. The model will be useful in cost-effectiveness analysis of nature conservation policies in heterogeneous or fragmented landscapes with problems of environmental pollution, as is the case in many European countries.
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1 Introduction

Research into cost-effective selection of reserve sites has spawned a rich body of literature including issues as diverse as the preferred algorithm to use (Cocks and Baird 1989; Saetersdal et al. 1993; Underhill 1994; Pressey et al. 1996; Nantel et al. 1998; Rodrigues and Gaston 2002), land prices (Ando et al. 1998; Polasky et al. 2001), uncertainty (Polasky et al. 2000;Polasky and Solow 2001), dynamic investment strategies (Costello and Polasky 2004), and spatial connectivity (see Williams et al. (2005) for an overview).

Such studies generally make two assumptions that help to make the problem tractable, but that also may oversimplify it: (i) a reserve site is either conserved or not; and (ii) a species is conserved whenever at least one reserve site where the species is present is conserved
. A common objection to these assumptions is that they tend to overlook spatial issues, which may result in reserve networks that are too fragmented to ensure durable species conservation. Over the last few years, a number of useful approaches have been developed that may help overcome this issue (Williams et al. 2005). Another objection to these assumptions is that the resulting reserve site networks have such environmental conditions that no species is conserved sufficiently well to ensure long-term survival (Gaston et al. 2001). The rationale behind this objection is that the selection model tends to select transition zones between different ecosystems with high species numbers but poor environmental conditions. Suppose, say, that one ecosystem provides optimal environmental conditions for one set of species, and another ecosystem does so for another set of species. Between the two ecosystems a transition zone may exist that is rich in species number, but its environmental quality suits the demands of each species only just as all species are better off in their own ecosystem. Most reserve site selection models are likely to select such transition zones due to their high species richness, even though they offer little prospect for long-term survival of the species present.

This paper aims to deal with these spatial and environmental issues by presenting a reserve site selection model that incorporates spatial and environmental demands of individual species. Because data for this model are currently being collected, the model is demonstrated with a set of randomly chosen parameter values.

The paper is organised as follows. Section 2 describes the structure of the model. Section 3 explains how the data set was constructed. Section 4 discusses how the model was run. Section 5 presents the results of the model. Section 6 concludes.

2 Model structure

The starting point of the model is the standard Reserve Site Selection Problem (RSSP) (Church and ReVelle 1974; Church et al. 1996), which aims to maximize the number of species covered by selecting a number of reserve sites where each reserve site has its own species composition. In the original RSSP, a species is conserved in a given reserve site if (i) the species is present in this site; and (ii) the site is selected for conservation. The model presented in this paper adds three conditions that must be met before the species is conserved: (i) sufficient habitat area must be available in the reserve site and its vicinity; (ii) the reserve site must have a suitable habitat type; (iii) the reserve must have the right environmental quality.

In general, relatively mobile species, such as birds and mammals, require more habitat area than species that are less mobile, such as invertebrates and reptiles. When demands are impossible to meet in a single reserve site, as is often the case, other reserve sites in the vicinity must provide sufficient habitat for the species to survive. However, what exactly this 'vicinity' means depends on the mobility of the species. Given a reserve site n, a highly mobile species present in n will be able to benefit from reserve sites further away from n than a less mobile species. Hence, the mobile species also benefits from more reserve sites than the immobile species. The model takes two spatial properties of species into consideration: (i) the species' home range; and (ii) the species' demand for space. The home range of a species can be interpreted as the average radius of its territory. If habitat patch lies within the home range of a species, the patch is assumed to contribute to the habitat area of the species. For a given species s to be conserved in a given reserve site n, the sum of the area of all suitable reserve sites within s's home range from n must be at least as high as s's demand for space.

With regard to habitat types, the model assumes some habitat types are perfect for a given species, whereas others are only reasonably suitable and others are not suitable at all. Furthermore, the quality of a habitat type can be offset by its size, such that a species could be just as well off with 5 hectares of habitat type 1 as with 10 hectares of habitat type 2.

Environmental quality is expressed in a number of environmental variables, each of which must be within a given range for the species to be conserved. Therefore, each species has a minimum and a maximum value for each environmental variable. If the value of any environmental variable is outside the required range, i.e. either below the minimum or above the maximum value, the species is not conserved in that particular reserve site.

2.1 Objective function

The overall objective of the model is to maximize the number of species conserved, which is denoted by the symbol
 S:
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where binary variable Ps denotes whether species s is conserved in any reserve site in the study area. Furthermore, let n denote reserve sites, and binary variable Bsn indicate whether species s is conserved in site n, given that the species is present in that site. Ps is thus restricted by the number of reserve sites where species s is conserved:
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where (s denotes the set of all reserve sites n where species s is known to reside. 

2.2 Habitat area and connectivity

Species s is only conserved in site n if sufficient habitat is available within reasonable range:
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where Hns ( 0 denotes the total habitat area for species s in and near reserve site n, δs denotes the minimum habitat area needed for species s to be conserved; (ns denotes the set of sites m that lie sufficiently close to site n to be considered 'near' for species s (where n ( (ns ( s,n), and Ens ( 0 denotes the area in site n that is suitable as habitat for species s. 

2.3 Habitat type

The local area of suitable habitat Ens depends on whether the habitat type of reserve site n is suitable for species s. In the model Ens is interpreted as the local habitat area corrected for the quality of the habitat type:
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where αn denotes the geographical area of reserve site n, σns denotes the suitability of habitat type d for species s such that σds = 0 if d is not suitable for s at all and  σds = 1 if d is perfect for s, and binary variable Zdn indicates habitat type of reserve site n such that Zdn = 1 if reserve site n is of habitat type d, and 0 otherwise. Each reserve site can be of only one habitat type:
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2.4 Environmental quality

A reserve site can only count as suitable habitat for species s if its environmental quality meets the demands of s. Therefore, local habitat area Ens is equal to zero if environmental quality of n is insufficient:
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where ωns is a coefficient with a value high enough to make equation (7) non-binding if environmental quality is sufficient, and binary variable Rns denotes whether environmental quality is indeed sufficient.

Environmental quality, however, includes several variables such as salinity, acidity, and groundwater level, and species generally have a minimum as well as a maximum value for each environmental variable. Therefore, let index c indicate different environmental criteria, and let Qcn denote environmental quality of reserve site n. For each species, the model two criteria for each environmental variable: one that gives the minimum value and another that gives the maximum value for the species. Figure 1 illustrates how the model includes these criteria such that Rsn can only be equal to unity if environmental quality is between the minimum value Qmin and the maximum value Qmax.
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Figure 1: Application of lower and upper bounds in the model

As Figure 1 shows, Rsn is restricted by a set of linear functions of environmental quality Qcn that are all of the following general form:
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where c denotes environmental variables such as salinity and groundwater level, r denotes whether the restriction represents a minimum or a maximum criterion to Qcn, and βcrs en φcrs are coefficients that are chosen such that the RHS of equation (6) equals unity if Qcn = Qmin for a minimum criterion or Qcn = Qmax for a maximum criterion.

The value of an environmental variable depends on its initial value on one hand and on measures taken to change the environmental variable on the other:
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where ξcn denotes the initial value of environmental variable c in site n, λcln denotes the effect that a single currency unit spent on environmental measure l has in site n on environmental variable c, and Lln the total amount of money spent on l in site n.

2.5 Cost function

The costs of conservation include the costs of establishing habitat in a particular site (μdn) and the costs of improving environmental quality. The costs of establishing habitat can also include general conservation costs different from environmental measures (e.g., maintenance of vegetation by grazing or burning). Furthermore, these costs can also reflect the initial habitat type of site n. If the initial habitat type of reserve site n is d, the costs of establishing d in n (as denoted by μdn) will be substantially lower than those of establishing other habitat types. The total cost function thus becomes:
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3 Construction of the data set

Although the data needed for the model should not be too difficult to collect, the model is tested with hypothetical data as real data are currently being collected. The data set includes 500 reserve sites, 3 habitat types, 40 species, 2 environmental variables and 4 possible environmental measures, but the model can also be run for data sets with different dimensions.

The size of each reserve site is chosen randomly from a range between 0 and 15 hectares, and the location of each reserve site is chosen by selecting its coordinates randomly from a range between 0 and 15 km. The initial habitat type of each reserve site is also chosen at random. Of the three habitat types, two are perfectly suitable for a subset of species, whereas one is moderately suitable for all species at a degree that is chosen randomly from a range between 0 and 1 for each species.

The presence of a species in a reserve site is drawn from a random distribution such that its probability is proportional to the suitability of the habitat type of that reserve site. The home range of each species is chosen randomly from a range between 0 and 3, and the demand for space of the species is equal to the corresponding surface area times a scaling term of 0.015 that may be interpreted as a reserve density in the area, times a disturbance term that ranges from 0.75 to 1.25.

Environmental demands of species and environmental quality of reserve sites are chosen in two steps. First, environmental values are assigned to habitat types. Second, environmental quality of reserve sites and environmental demands of species are set based on the values of the corresponding habitat type times a disturbance term. All environmental measures are aimed at one environmental variable at a time, except for one measure that has a large, intended effect on one variable and a small, unintended effect on the other.

4 Running the model

The model is written in the modelling language GAMS (Brooke et al. 1998) and run with the commercial MIP solver CPLEX 9.0 (ILOG 2003) on a Toshiba Satellite Pro with a Pentium III processor, 256 MB of RAM and 1066 MHz clock speed. CPLEX is an MIP solver that is applied in numerous reserve site selection models (see e.g. Camm et al. 2002; Fischer and Church 2003; Pyke and Fischer 2005, Tóth 2005). This solver calculates two figures for each model, namely (i) the highest objective value above which the solver has proven that no feasible solution exists
, also referred to as the best bound; and (ii) the objective value of the best known integer solution. In each iteration CPLEX tries to improve either or both figures until they converge. Convergence can be expressed by the difference between the best known integer solution and the best bound, divided by the best known integer solution, a measure that is also referred to as the relative gap. Like most MIP solvers, CPLEX can be fine-tuned for the model under consideration.

A considerable part of the RSSP literature is devoted to the appropriate choice of solve algorithm (Margules and Nicholls 1988; Nantel et al. 1998; Cocks and Baird 1989; Saetersdal et al. 1993; Underhill 1994; Pressey et al. 1996; Rodrigues and Gaston 2002. Although heuristic algorithms perform almost as well as MIP algorithms with considerable reductions in calculation time and memory demands, Rodrigues and Gaston (2002) argue that as the capacity and speed of computers continues to increase, this advantage of heuristic algorithms will become less and less important. Furthermore, as more researchers apply MIP solvers such as CPLEX to the reserve site selection problem, experience with regard to how these solvers are best applied is also growing. For instance, Fischer and Church (2003) point out that the relative gap closes log-linearly with time, so that the solver makes large improvements in the first iterations and only small ones towards the end of the solve. Tóth (2005) runs most of his reserve site selection models with the branching variable in CPLEX set at strong branching.

The model was run to produce a cost curve for species conservation by maximizing the number of species conserved at maximum costs levels of 10, 20, 30, 40, 50 and 60 units. As the model takes a considerable amount of time for each solve, however, the running time of each solve was limited to two hours. To gain insight into which CPLEX settings are likely to produce the best results within that time, the model was first tested for different settings. These tests suggested that given the available hardware, running the model with a best-estimate search and pseudo-reduced cost branching was likely to produce the most acceptable results. To produce an indication of how much the time limit may have influenced the results, the model was also run for a maximum of eight hours under a cost limit of 60 units.

5 Results

Figure 2 shows the convergence of the best known integer solution and the best bound in the eight-hour run at a cost limit of 60 units. The results show that the improvements of the gap between the two-hour mark and the eight-hour mark are very small.
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Figure 2: Convergence of the best known solution and the best bound in the eight-hour run at a cost limit of 60 units. The vertical line denotes the two-hour iteration.

Figure 3 shows the best known solutions and the best bounds in the two-hour runs for each maximum cost level. In theory, the optimal solution at each maximum cost level lies somewhere between, or on one of these two values. However, Fischer and Church's (2003) observation that the solver generally makes only small improvements in the end of the model run suggests that the optimum likely lies closer to the best known integer solution than to the best bound. Nevertheless, the gap is still quite large, and as Figure 2 suggests, closing it may take a very long time. 
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Figure 3: Best known integer solutions and best bounds in the two-hour runs for each maximum cost level. The optimal solutions lie between the best known integer solutions and the best bounds, but it may take a very long time to estimate their exact values.

6 Discussion and conclusions

This paper presents an extension of existing reserve site selection models that adds restrictions with regard to habitat type, habitat area, habitat size, and environmental quality to the standard reserve site selection model. Although the model was run with a hypothetical data set, collecting the data required should not be too difficult in most industrialised countries.

The model should be considered as work in progress, and lots of issues remain to be solved. The most important step would of course be to parameterise the model with real data, a step that may also require some minor changes to the model structure. More fine-tuning of the optimisation procedure should also be possible, not only by changing the CPLEX settings but also by improvements in the model structure. The results presented here may suggest that heuristic algorithms such as Simulated Annealing or the Genetic Algorithm (see e.g. Önal 2003) are preferred over the MIP solver applied here. However, it should also be stressed that whereas such heuristics remain to some extent 'shots in the dark' where the theoretical optimum is concerned, MIP solvers such as the one applied here also provide a range within which the optimum should lie. Nevertheless, the current results suggest that reaching full convergence will take an excessive amount of time, so more attention should be paid to improving the solve procedure.

The model may already be easier to run with real data than with the hypothetical data set constructed for this paper. The main reason why this may be so is that the distribution of habitat types over the study area, and hence the corresponding environmental variables and species presence, is drawn from a uniform distribution. In reality, however, a certain degree of spatial correlation in these variables may be expected. Such spatial clustering of habitat types and environmental quality will probably reduce the number of candidate solutions to the MIP solver.

Further improvements to the model structure could make the model also more realistic. For instance, the way the model deals with spatial issues as represented by equations (3) and (4) neglects the possibility that the connectedness of two reserve sites also depends on what happens between them. After all, a third reserve site may act as a stepping-stone, but also as an ecological barrier. Furthermore, the assumption that a species is either conserved or not may be substituted by a probabilistic approach, where the model works with presence probabilities rather than the binary decision variable currently used. Although the binary model is common among most analyses of the Reserve Site Selection Problem, probabilistic reserve site selection models have also been developed (see e.g. Camm et al. 2002).

Despite the amount of work to be done, the model presented in this paper includes features that will make it more useful for evaluation of European nature conservation policies than the reserve site selection models that have been developed so far. The majority of existing reserve site selection models were designed to analyse conservation planning of reserve networks, mostly in forest areas, in the USA. As these models tend to be applied in large, relatively homogeneous areas, issues such as habitat fragmentation, habitat type and environmental quality are likely to be much less important than in Western Europe, where many endangered species reside in habitat that is too fragmented, too small and too polluted to maintain sustainable populations of the species. The model presented in this paper incorporates some of the aspects and measures related to these issues, which may make it especially useful for cost-effectiveness analyses of nature policies in Europe.
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� Of course, in variations to the standard model this could be any number of reserve sites instead of only one.


� For easy interpretation we denote all endogenous variables by upper case Latin symbols; exogenous variables and parameters by lower case Greek symbols, sets by upper case Greek symbols and indices by lower case Latin symbols.


� If the model aims, of course, to maximize the objective value, as is the case with our model.
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